Razne magistrske naloge za študente FS
Mentor: doc. dr. Boštjan Gabrovšek
Povezava: https://rsmat.splet.arnes.si/files/2022/10/Teme-za-magisterij.pdf
Nekatere spodnje teme so primerne tudi za študente FS v bolj aplikativni izvedbi.
Številne teme iz
– matrične in operatorske analize,
– optimizacija proizvodnih sistemov z max-plus algebraičnimi metodami (Optimization of manufactoring systems by using max-plus algebraic methods),
– optimizacija in stabilnost transportnih sistemov z max-plus algebraičnimi metodami (Optimization and stability of transport systems by using max-plus algebraic methods)
- možen tudi dogovor pri izboru teme
Mentor: izr. prof. dr. Aljoša Peperko
Nekaj relevantne literature:
- Bernd Heidergott, Geert Jan Olsder, & Jacob van der Woude, Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications, Priceton University Press, 2006.
- Rob M.P. Goverde, Bernd Heidergott, Glenn Merlet, Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems
- Rob M.P. Goverde, Railway timetable stability analysis using max-plus system theory, Transportation Research Part B 41 (2007) 179–201
- R. Sato, Y. Khojasteh-Ghamari, An integrated framework for card-based production control systems, J Intell Manuf (2012), 717- 731.
- P. Butkovič Max-linear systems: theory and algorithms, Springer-Verlag, London, 2010.
Teme iz:
– Spektralna teorija za nelinearne max-operatorje in aplikacije (Spectral theory for nonliner max-operators and applications)
– Neenakosti za operatorje in matrike (Inequalities for operators and matrices)
– Posplošeni in skupni spektralni radij množice operatorjev in matrik ter njuni max-algebra verziji (Generalized and joint spectral radius of a set of operators and matrices – and their max-algebra versions)
-možen tudi dogovor pri izboru teme
Mentor: izr. prof. dr. Aljoša Peperko
Nekaj relevantnih publikacij (Some relevant publications):
- J. Appell, E. De Pascale, A. Vignoli, Nonlinear Spectral Theory, Walter de Gruyter GmbH and Co. KG, Berlin, 2004, available online
- X. Dai, Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices, J. Math. Anal. Appl. 379 (2011) 827-833.
- A. Peperko, Bounds on the generalized and the joint spectral radius of Hadamard products of bounded sets of positive operators on sequence spaces, Linear Algebra Appl. 437 (2012), 189–201.
- V. Muller, A. Peperko, Generalized spectral radius and its max algebra version, Linear Algebra Appl. 439 (2013), 1006–1016.
- A. Peperko, On the max version of the generalized spectral radius theorem, Linear Algebra Appl. 428 (2008), 2312–2318.
- M. Kandić, A. Peperko , On the submultiplicativity and subadditivity of the spectral and essential spectral radius, Banach J. Math. Anal., 2016.
- V. Muller, A. Peperko, On the spectrum in max-algebra, Lin. Alg. Appl. (2015), 250-266.
- Y. A. Abramovich, C. D. Aliprantis, An invitation to operator theory, American Mathematical Society, Providence, 2002.
- V.N. Kolokoltsov and V.P. Maslov,Idempotent analysis and its applications, Kluwer Acad. Publ., 1997.
- G.L. Litvinov, The Maslov dequantization, idempotent and tropical mathematics: A brief introduction, J. Math. Sci.(N. Y.) 140, no.3 (2007), 426–444, 2005.
- G. B. Shpiz, An eigenvector existence theorem in idempotent analysis, Mathematical Notes, 82, 3-4 (2007), 410–417.
- L. Pachter and B. Sturmfels (eds.), Algebraic statistics for computational biology, Cambridge Univ. Press, New York, 2005.
- .D. Nussbaum, Convexity and log convexity for the spectral radius, Linear Algebra Appl. 73 (1986), 59–122.
- B. Lemmens, R.D. Nussbaum, Continuity of the cone spectral radius, 2011.
- J. Mallet-Paret and R.D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plusoperators, Discrete and Continuous Dynamical Systems, vol 8, num 3 (2002), 519–562.
- J. Mallet-Paret and R. D. Nussbaum. Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory and Applications, 7 (2010), 103–143.
- V.S. Shulman and Yu.V. Turovskii, Joint spectral radius, operator semigroups and a problem of W.Wojtynski, J. Funct. Anal., 177 (2000), 383–441.
Nedavni komentarji